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Abstract

Tropical coastal ecosystems are in decline worldwide due to an increasing suite of human
activities, which threaten the biodiversity and human wellbeing that these ecosystems
support. One of the major drivers of decline is poor water quality from land-based activities.
This review summarises the evidence of impacts to coastal ecosystems, particularly coral
reefs, from sediments, nutrients, chemicals and pathogens entering coastal zones through
surface and groundwater. We also assess how these pollutants affect the health of coastal
human populations through: (1) enhanced transmission of infectious diseases; (2) reduced
food availability and nutritional deficit from decline of fisheries associated with degraded
habitat; and (3) food poisoning from consumption of contaminated seafood. We use this
information to identify opportunities for holistic approaches to integrated watershed
management (IWM) that target overlapping drivers of ill-health in downstream coastal
ecosystems and people. We demonstrate that appropriate management requires taking a
multi-sector, systems approach that accounts for socio-ecological feedbacks, with collabor-
ation required across environmental, agricultural, public health, and water, sanitation and
hygiene sectors, as well as across the land–sea interface. Finally, we provide recommendations
of key actions for IWM that can help achieve multiple sustainable development goals for both
nature and people on coasts.

Impact Statements

The pollution of water and waterways from land-based human activities has extensive impacts
on both human and ecosystem health, contributing to significant global health burdens and loss
of critical ecosystem services. Management of pollution is therefore a major focus of multiple
sustainable development goals (SDGs) to achieve targets for: zero hunger (SDG 2); good health
and well-being (SDG 3); clean water and sanitation (SDG 6); climate action (SDG 13); life below
water (SDG 14); and life on land (SDG 15). Despite extensive and complex impacts of poor water
quality, pollution control has been highly sectorised and under-resourced, with poor coordin-
ation of implementation, often across insufficient scales to realise benefits. This review provides
a novel summary of the overlapping impacts of water pollution to downstream public and
coastal ecosystem health to support planning and decision-making that benefits a wide range of
stakeholders from government, civil society and the private sector. We provide evidence-based
suggestions to optimise investments in holistic, integrated watershed management (IWM) to
improve water quality and achieve overall systems health, which also provides co-benefits for
biodiversity and climate. We also identify the key enabling factors required to coordinate and
monitor IWM implementation to achieve desired outcomes. Specifically, the summary of
pollution impacts and suggested management strategies provided in this review aim to provide
awareness and tools to alleviate impacts to nutrition, water-related disease burdens and food
poisoning that arise from poor water quality, which cause devastating economic and health costs
disproportionately borne by the poorest countries.
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Introduction

Tropical coastal ecosystems support some of the most diverse and
productive environments on Earth and provide millions of people
with vital ecosystem goods and services, such as food, livelihoods
and coastal protection (Moberg and Folke, 1999; Cesar et al., 2003).
However, with over 1.3 billion people in the tropics living within
100 km of coastlines (Sale et al., 2014), coastal ecosystems are
becoming increasingly threatened by a suite of local, regional and
global human activities, many of which affect water quality
(Bellwood et al., 2004; Lotze et al., 2006; Orth et al., 2006). Declining
water quality is a primary driver of coastal ecosystem degradation
(Crain et al., 2009). Declines in water quality are driven mainly by
pollutants from upstream human activities within watersheds flow-
ing into coastal environments and are expected to worsen with
increased coastal development and future climate change (Rabalais
et al., 2009; He and Silliman, 2019).

Watershed management has received increasing focus as a tool
for preserving the health of downstream coastal ecosystems, with
research demonstrating critical land–sea linkages for coastal eco-
system health (Carlson et al., 2019; Sahavacharin et al., 2022).
Despite the extensive literature and examples of decline, there are
few examples of watershed management producing improvements
to tropical coastal ecosystem conditions (Wear, 2016). Challenges
in achieving measurable success are largely due to the large spatial
scale over which interventions often need to be applied within
watersheds to adequately address multiple sources of pollution,
capacity shortfalls for necessary monitoring, and the temporal lags
to detect any changes in water quality and/or ecosystem health
within coastal environments (Meals et al., 2010).

Watershed condition also regulates a suite of processes that
affect human health and wellbeing, including water filtration, flood
management, and the provision of important cultural and recre-
ational services (Jenkins et al., 2018a). Polluted water flowing
within watersheds onto coastal environments is a major contribu-
tor to global human disease burdens, with poor water quality
conservatively estimated to result annually in 1.4 million deaths,
3 million disability-adjusted life years and 12 billion USD in eco-
nomic losses, a cost disproportionately borne by the poorest coun-
tries (Shuval, 2003; Fuller et al., 2022). Yet the influence of
watershed management on human health is rarely considered
and is largely absent from public health literature (Bunch et al.,
2014).

Identifying the overlapping upstream drivers of poor water
quality that also create significant risks to public health presents
an opportunity to motivate action and leverage long-term and
large-scale investments while simultaneously improving coastal
ecosystem water quality. By facilitating both human and ecosystem
health, watersheds can serve as a focal area for place-based man-
agement interventions that serve to promote overall systems health
(Cadham et al., 2005; Parkes and Horwitz, 2009; Jenkins et al.,
2018b; Jordan and Benson, 2020). Here, we consider systems health
as the emergent result of functioning interdependencies, inter-
actions and feedbacks between ecological and socio-cultural set-
tings, behaviour, and physiology, nested across micro-level (e.g.,
communities of microbes), meso-level (e.g., watersheds) and
macro-level (e.g., global climate patterns) domains.

This review aims to: (1) synthesise and summarise the latest
science regarding water quality impacts on coastal ecosystems
(focused primarily on coral reefs); (2) identify pathways to improve
systems health through policy implementation and direct manage-
ment actions; and (3) provide evidence-based suggestions for

strategic investments in watershed interventions across sectors that
can help achieve multiple sustainable development goals (SDGs)
and other global commitments and targets relating to biodiversity,
marine pollution and public health.

Water quality impacts on coastal ecosystems

The quantity and quality of land-based runoff flowing into adjacent
coastal ecosystems is determined by the characteristics of the
watershed, such as geology, rainfall, soil type, land cover/vegetation
(type and quantity) and slope (Douglas, 1967). There is a large body
of evidence that demonstrates how human activities within water-
sheds alter runoff by removing native vegetation, changing the
hydrology, altering microbial communities and adding/increasing
pollutants within runoff (e.g., Peters andMeybeck, 2000; Liao et al.,
2020).

Several broad pollutant categories are used to describe the
pollutants reaching coastal waters from land-based activities. Here,
we focus on the following common categories applicable to both
human and coastal ecosystem health: sediments, nutrients, persist-
ent organic pollutants (POPs), plastics andmicrodebris, pathogens,
heavy metals, and pharmaceuticals and personal care products
(Todd et al., 2010; World Health Organization (WHO), 2016;
Kroon et al., 2020). Terrestrially derived sediments, heavy metals
and nutrients are naturally transported from soils into coastal
environments by ground and surface water, but due to large-scale
human activities such as land-clearing (Table 1), the sources and
transport into coastal waters has increased drastically, threatening
over 30% of coral reefs globally (Andrello et al., 2021). POPs are
synthetic organic chemicals that can persist in soils and water and
bioaccumulate in organisms. POPs are widely produced across
industries (Table 1) both intentionally, such as some insecticides,
and unintentionally as by-products, such as dioxins (Weber et al.,
2011). Other synthetic pollutants include the nonorganic plastics
and microdebris, which can flow into coastal waters from numer-
ous human sources (Table 1) such as trash, litter and weathering of
materials like tires (Smith et al., 2018; Macleod et al., 2021).
Pathogens are disease-causing microbes and can naturally exist in
coastal water and organisms but can also be introduced from land-
based sources such as sewage (Table 1). Pharmaceuticals include
chemicals used for personal, agricultural or animal health, such as
antibiotics, while personal care products include chemicals gener-
ally used for cosmetic reasons, such as shampoos and moisturisers
(Boxall et al., 2012).

The primary land-based activities creating these pollutants and
driving global declines in coastal water quality are land clearing,
poor food production practices, urban development, mining and
poor wastewater management (domestic and industrial) (Lu et al.,
2018). These human activities erode or release pollutants such as
sediment,metals, pathogens and nutrients into surface and ground-
water, which are then transported downstream to coastal environ-
ments (Crain et al., 2009; Amato et al., 2016). The flow of impacts
from human activities within watersheds to coastal ecosystems is
summarised below (Figure 1).

As outlined in Table 1, pollutants can have multiple sources that
can make it difficult to pinpoint which activity in a watershed is
having the greatest impact on coastal ecosystems. For example,
nutrients and sediments can originate from both wastewater pol-
lution and agricultural runoff (Figure 1). Similarly, pharmaceuticals
and personal care products can originate from cosmetics and
medications used domestically as well as from medications used
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in agriculture (Table 1). In addition to the complexity of sources
and types of pollutants, synergistic impacts and interactions occur
when multiple pollutants are present at elevated levels, which can
exacerbate the degradation of coastal ecosystems and harm associ-
ated organisms (Lu et al., 2018; Huang et al., 2021). Synergistic
impacts and interactions also occur when pollutants are present
with other stressors, such as climate change, disease, invasive
species and overfishing. We focus on synergistic interactions on
coral reefs, given the large body of research.

Herbivory is an important ecological process within coral reef
ecosystems and can have complex and synergistic interactions
with poor water quality (Table 2; Mumby et al., 2007). For
example, in reefs with combined exposure to poor water quality
and few herbivores, macroalgae and sediment-laden turfs can
replace live coral as the dominant benthos (McField et al., 2020,
2022). Sea level rise and climate-driven ocean warming are pre-
dicted to increase the sensitivity of coral reef ecosystems to poor
water quality. Land-based pollution can lower the threshold for
thermal stress and increase coral sensitivity to infection, resulting

in increased bleaching (Fisher et al., 2019), coral mortality (Claar
et al., 2020) and outbreaks of disease on coral reefs (Vega-
Thurber et al., 2020). Corals that bleach from thermal stress also
have reduced capacity to cope with sediment pollution (Bessell-
Browne et al., 2017). Nutrient pollution can result in brittle corals
that are less resilient to the impacts of climate change, such as sea
level rise and the increased severity and frequency of cyclones
(Table 2; Rice et al., 2020). Improving water quality through
management of human activities within watersheds can therefore
improve the resilience of corals to global impacts such as climate
change.

Water quality impacts on human health

Many of the same drivers of declines in water quality and aquatic
biodiversity, such as watershed deforestation, forest fragmentation
on riverbanks and poor coverage of sanitation services, are also
associated with human health impacts (Table 2). Impacts to

Table 1. Key references documenting global/regional linkages between human activities within watersheds and elevated levels of pollutants in runoff to coastal
ecosystems

Human watershed activity Pollutant Key references

Agriculture • Sediments
• Nutrients
• Persistent organic pollutants (e.g., organophosphates and
organochlorides in pesticides)

• Heavy metals (e.g., copper in fertilisers, mercury in
fungicides)

• Pharmaceuticals (e.g., antibiotics)
• Plastics and microdebris

van Dam et al., 2011; Thorburn et al., 2013; Kroon
et al., 2014; MacLeod et al., 2021

Livestock and invasive ungulates • Sediments
• Nutrients
• Pathogens (e.g., zoonotic virus/bacteria)
• Heavy metals (e.g., copper from livestock feed)
• Pharmaceuticals (e.g., antibiotics)
• Plastics and microdebris

Agouridis et al., 2005; McDowell and Wilcock, 2008;
Todd et al., 2010; Bartley et al., 2014

Aquaculture • Nutrients
• Persistent organic pollutants (e.g., organotin in
molluscicides)

• Heavy metals (e.g., copper in algaecides)
• Pharmaceuticals (e.g., antibiotics)
• Plastics and microdebris

Gräslund and Bengtsson, 2001; Primavera, 2006;
Lusher et al., 2017; Wang et al., 2020

Deforestation and burning • Sediments
• Nutrients
• Persistent organic pollutants (e.g., polycyclic aromatic
hydrocarbons from burning)

Sundarambal et al., 2010; Todd et al., 2010; Suárez‐
Castro et al., 2021

Urban development (surface hardening
and channel modification)

• Sediments Freeman et al., 2007; Kroon et al., 2014; McGrane,
2016

Mining (including gravel extraction) • Sediments
• Nutrients
• Persistent organic pollutants (e.g., polycyclic aromatic
hydrocarbons from coal mining)

• Heavy metals (e.g., lead, nickel, mercury)

Kondolf, 1994; Ahrens and Morrisey, 2005; Todd
et al., 2010; van Dam et al., 2011; Shumway, 2020

Wastewater (sewage, domestic,
industrial, and storm water)

• Sediments
• Nutrients
• Pathogens (e.g., water-associated bacteria/virus)
• Persistent organic pollutants (e.g., oil hydrocarbons
from urban storm water)

• Heavy metals (e.g., tin from industrial wastewater)
• Pharmaceuticals and personal care products (e.g., anti-
biotics, psychotropic drugs, and cosmetics)

• Plastics and microdebris

Loya, 2004; Todd et al., 2010; van Dam et al., 2011;
Kroon et al., 2014; Wear and Thurber, 2015; Boucher
and Friot, 2017; Littman et al., 2020; Tuholske et al.,
2021; Wear et al., 2021
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humans from poor water quality include enhanced transmission of
disease through polluted water and waterways, nutrition deficits
from fisheries decline and chronic illness, and food poisoning from
the contamination of important aquatic foods (Shuval, 2003;World
Health Organization (WHO), 2015; Chase and Ngure, 2016). Over
a million people die each year from water-related diseases, and at
least 50% of these deaths are children and attributable to microbial
intestinal infections (Kovacs et al., 2015). Water related diseases
such as diarrhoea are major contributors to global disease burdens,
causing 8% of all deaths in children under the age of 5 years largely
due to inadequate drinking-water quality (United Nations Inter-
Agency Group for Child Mortality Estimation (UN IGME), 2019;
World Health Organization (WHO) and United Nations Chil-
dren’s Fund (UNICEF), 2021). Persistent endemicity and explosive
outbreaks of water-related disease are often fuelled by interacting
environmental factors related to climate change, land use and
changing social conditions (Cann et al., 2013; Prüss-Ustün et al.,
2019). Water-related illness and travel associated with accessing
safe water sources also contributes to reduced socioeconomic out-
comes, such as reduced school attendance and gender equity
(Fisher, 2008; Sorenson et al., 2011).

Communities reliant on surface and groundwater sources for
drinking, bathing and household cleaning water are most at risk to
water-related diseases and exposure to pollutants of emerging
concern, particularly in tropical environments (Ragosta et al.,
2011; World Health Organization (WHO), 2016; Herrera et al.,
2017). Climate change is predicted to further increase global disease
burdens by altering water-related disease dynamics (Semenza,
2020). Changes in rainfall and temperature will threaten water
security, enhance pathogen survival and virulence, and increase
exposure to contaminated water through multiple pathways,

including flooding (Hofstra, 2011; Levy et al., 2018). Rates of
diarrhoea are predicted to increase under warmer and/or wetter
conditions, with 1°C of warming predicted to increase diarrhoeal
disease by 5% in developing countries (Singh et al., 2001).

Although water-related diseases are more often associated with
exposure on land and freshwater, polluted seawater also presents a
significant risk to human health. An estimated 180 million cases of
upper respiratory disease and gastroenteritis occur each year due to
humans bathing in polluted ocean waters or ingesting contamin-
ated seafood, while around 4 million cases (and 40 thousand
deaths) of infectious hepatitis A and E (HAV/HEV) occur annually
from contaminated seafood from polluted coastal waters (Shuval,
2003; World Health Organization (WHO), 2015). Additionally,
seafood contaminated with methylmercury and polychlorinated
biphenyls can cause cardiovascular diseases in humans as well as
severe impacts to infants in utero (Landrigan et al., 2020). The
impacts of polluted seawater create a huge social and economic cost
to communities, with pathogens in ocean pollution causing an
estimated $19.4 billion (2022 USD) in economic losses annually
because of their direct impacts on humans alone (Shuval, 2003).

Microplastics and debris found in wastewater pollution can also
form a unique microbial community that is distinct from the
surrounding water (Zettler et al., 2013). The microbial community
on plastic can include pathogenic microorganisms, such as Vibrio
spp., that cause infections through contaminated water or seafood
consumption (Zettler et al., 2013; Kirstein et al., 2016). In the case of
some zoonotic parasitic microbes that cause illness in aquatic
wildlife and illness in humans from shellfish consumption, counts
of the microbes are higher on plastics than in surrounding water
(Zhang et al., 2022). Plastics therefore potentially create a novel
habitat for pathogens to be concentrated and dispersed beyond

Figure 1. Diagram depicting flow of impacts from key land-based activities on water quality properties that reach coral reef ecosystems.

4 Ama Wakwella et al.

https://doi.org/10.1017/cft.2023.15 Published online by Cambridge University Press

https://doi.org/10.1017/cft.2023.15


Table 2. Impacts of poor water quality on humans, coral reefs, and coral reef organisms categorised by pollutant type, with key references indicated for further
information

Pollutant Impacts to health

Terrestrially
derived
sediment

Humans Human populations Key references

Increased cost and complexity of water treatment. ► Can lead to inadequate coverage
of treated water and increased
time/cost accessing safe water
sources.

World Health Organization (WHO),
2012, 2016; Price and Heberling,
2018; Albert et al., 2021

Increased risk of water-related diseases in humans. ► Increased mortality and
comorbidity, healthcare
burdens.

World Health Organization (WHO),
2012, 2016; Jenkins et al., 2016;
Herrera et al., 2017; Albert et al.,
2021

Change in aesthetic of water for human use. ► Loss of cultural and spiritual
values, reduced tourism
benefits.

World Health Organization (WHO),
2012; 2016; Landrigan et al., 2020

Coral reef organisms Coral reef ecosystems Human populations Key references

Reduced fertilisation
and settlement for coral
and reef building
species.
Reduced coral growth
rate, colony size, and
photosynthetic yield.
Partial mortality.

►Reduced reef accretion and coral
cover reduces habitat
complexity and the capacity of
coral reef ecosystems to recover
from disturbances.

► Reduced coastal protection,
tourism benefits, fisheries
services, andmay lead to human
health impacts from reduced
nutrition.

Rogers, 1990; Van Woesik and
Done, 1997; Gilmour, 1999;
Wesseling et al., 2001; Philipp and
Fabricius, 2003; Fabricius, 2005;
Bessell-Browne et al., 2017;
Ricardo et al., 2018; Jones et al.,
2019

Reduced coral species
richness and altered
coral complexity and
community
composition.

► Reduced ecosystem diversity
and habitat complexity, which
impacts the capacity of coral
reef ecosystems to recover from
disturbances.

Rogers, 1990; Edinger et al., 1998;
West and vanWoesik, 2001; Golbuu
et al., 2008; van der Meij et al., 2010

Suppression of
herbivory by reef fish.
Reduced abundance of
herbivorous fish
species.
Accumulation in algal
turfs.

► Proliferation of coral-inhibiting
algae, reducing coral cover and
the capacity of coral reef
ecosystems to recover from
disturbances.
Reduced structure and nutrition
also leads to reduced fish
populations and diversity.

Wenger et al., 2015; Moustaka et
al., 2018; Tebbett and Bellwood,
2019; Wenger et al., 2020

Extended larval
development and
reduced settlement of
fish.
Gill damage and
mortality of fish.
Increased susceptibility
to disease of larval fish.
Reduced foraging
ability.
Reduced fish species
richness.

► Reduced fish recruitment,
biomass and diversity, which
impacts capacity of reef
ecosystems to recover from
disturbance.

► Reduced tourism benefits,
fisheries services, and may lead
to human health impacts from
reduced nutrition.

Hess et al., 2015; Wenger et al.,
2015; Moustaka et al., 2018

Nutrients
(organic and
inorganic)*

Humans Human populations Key references

Severe health impacts for human infants through consumption
of contaminated water.

► Increased mortality and
comorbidity.

World Health Organization (WHO),
2016

Coral reef organisms Coral reef ecosystems Human populations Key references

Reduced fertilisation,
settlement and
reproductive success of
corals.
Reduced coral growth
rate
Partial or complete
mortality of corals

►Reduced reef accretion and coral
cover reduces habitat
complexity and the capacity of
coral reef ecosystems to recover
from disturbances.

► Reduced coastal protection,
fisheries services, and may lead
to health impacts from reduced
nutrition.

Harrison and Ward, 2001; Koop
et al., 2001; Cox and Ward, 2002;
Loya, 2004; Todd et al., 2010;
Weber et al., 2012

Reduced calcification
and coral skeletal
density.

► Brittle corals that are more
susceptible to breaking and
erosion. This reduces the

► Reduced coastal protection. Edinger et al., 2000; Koop et al.,
2001; Fabricius, 2005; Le Grand and
Fabricius, 2011; Rice et al., 2020

(Continued)
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Table 2. (Continued)

Pollutant Impacts to health

Increased
macrobioeroder density
in corals.

capacity to recover from
disturbances.

Increased algal growth. ► Proliferation of coral-inhibiting
algae under reduced herbivory,
reducing coral cover and the
capacity of coral reef
ecosystems to recover from
disturbances.

► Reduced coastal protection,
fisheries services, and may lead
to health impacts from reduced
nutrition

McManus et al., 2000; Lapointe
et al., 2011

Coral disease. ► Potential reductions in the
composition, abundance, and
ultimately the accretion of coral.
Limited information at present.

► Reduced coastal protection. Redding et al., 2013

Pathogens Humans Human populations Key references

Increased risk of water-related diseases in humans. ► Increased mortality and
comorbidity, healthcare
burdens.

Fleming et al., 2006; Sindermann,
2006; Lau et al., 2010; World Health
Organization (WHO), 2016, 2019;
Lamb et al., 2017

Coral reef organisms Coral reef ecosystems Human populations Key references

Coral disease. ► Potential reductions in the
composition, abundance, and
ultimately the accretion of coral.
Potential for corals to act as
vectors or reservoirs of human
pathogens. Limited information
at present.

► Reduced coastal protection
services. Potential increase in
health burdens from
waterborne infectious disease.

Sutherland et al., 2011

Increased pathogenic
microbiota on fish gills
and shellfish.

► Potential outbreak of disease
and reductions in fish
recruitment. Limited
information at present.

► Potentially reduced fisheries
services, and may lead to health
impacts from reduced nutrition
and increase in food poisoning.

Shuval, 2003; Hess et al., 2015;
World Health Organization (WHO),
2015

Persistent
organic
pollutants
(POPs)

Humans Human populations Key references

Severe health impacts (e.g., cardiovascular disease, toxicity and
developmental defects) through consumption of contaminated
water.

► Increased mortality and
comorbidity, reduced schooling
attendance, healthcare
burdens.

World Health Organization (WHO),
2016; Landrigan et al., 2020; Müller
et al., 2020

Promotion of antifungal resistant pathogens. ► Limited information at present. World Health Organization (WHO),
2014; O’Neill, 2016; Woolhouse
et al., 2016

Potential health impacts from immune and endocrine
disruption.

World Health Organization (WHO),
2016

Offensive odour in water. ► Loss of cultural and spiritual
values, reduced tourism
benefits.

World Health Organization (WHO),
2012, 2016;

Coral reef organisms Coral reef ecosystems Human populations Key references

Reduced fertilisation,
settlement, and
development of corals
and coral reef
organisms.
Accumulation in coral
and coral reef
organisms.
Reduced
photosynthetic
efficiency, chlorophyll
concentration, and
symbiont density in
corals.
Reduced growth of
coral reef building
organisms.
Partial and complete

► Reduced coral cover and reef
accretion. Ultimately reduces
coral reef ecosystem capacity to
recover from disturbances.

► Reduced coastal protection,
fisheries services, and may lead
to health impacts from reduced
nutrition.

Todd et al., 2010; Turner and
Renegar, 2017; Ranjbar Jafarabadi
et al., 2018; Kroon et al., 2020;
Nalley et al., 2021

(Continued)
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Table 2. (Continued)

Pollutant Impacts to health

mortality of coral and
coral reef organisms.
Coral bleaching.

Olfactory impairment in
fish.

► Limited information on chronic
exposure at present. Could alter
fish population dynamics and
leave coral reef organism’s
vulnerable to additional
stressors.

► Potentially reduced fisheries
services which may lead to
health impacts from reduced
nutrition.

Wenger et al., 2015

Endocrine disruption in
fish and other coral reef
organisms.

Immuno-suppression in
fish.

Accumulation in fish
and molluscs.

► Severe disease and impacts to
developing infants through
consumption of contaminated
seafood.

Landrigan et al., 2020

Heavy metals Humans Human populations Key references

Severe health impacts (e.g., developmental defects and
toxicity) through contact with or consumption of contaminated
water.

► Increased mortality and
comorbidity, reduced schooling
attendance, healthcare
burdens.

World Health Organization (WHO),
2016; Rehman et al., 2018;
Landrigan et al., 2020

Inhibition of biological sewage treatment. ► Can lead to inadequate coverage
of treated water and increased
time/cost accessing safe water
sources.

World Health Organization (WHO),
2016

Coral reef organisms Coral reef ecosystems Human populations Key references

Reduced fertilisation,
settlement, and
development of corals.
Coral bleaching.
Reduced chlorophyll
concentration and
symbiont density in
corals.
Partial and complete
mortality of corals.

► Reduced coral cover and reef
accretion. Ultimately reduces
coral reef ecosystem capacity to
recover from disturbances.

► Reduced coastal protection,
fisheries services, and may lead
to health impacts from reduced
nutrition.

Negri et al., 2002; Nalley et al., 2021

Embryo malformation
and reduced hatching
success in fish.
Olfactory impairment
and behavioural
changes in fish.

► Fish larvae and new recruits are
potentially more prone to
predation. Limited information
on chronic and lower levels of
exposure at present.

► Reduced fisheries services and
may lead to health impacts from
reduced nutrition. Various
severe health impacts from
seafood consumption

Wenger et al., 2015

Immuno-suppression in
fish.
Accumulation in fish
and molluscs.

► Increased disease and death
rates in fish.

Bosch et al., 2016; Landrigan et al.,
2020

Endocrine disruption of
fish reproduction.

Personal care
products and
pharmaceuticals

Humans Human populations Key references

Promotion of antimicrobial resistant water related pathogens. ► Increased mortality and
comorbidity, healthcare
burdens.

World Health Organization (WHO),
2014; Woolhouse et al., 2016

Potential endocrine disruption of human development and
immune systems.

► Limited information at present. World Health Organization (WHO),
2016

Coral reef organisms Coral reef ecosystems Human populations Key references

Endocrine disruption of
coral fecundity.
Endocrine disruption of
development and/or
growth of coral and
coral reef organisms.

► May lead to reductions in the
composition, abundance, and
ultimately the accretion of coral.
Limited information at present

► Potentially reduced coastal
protection and fisheries
services.

Tarrant et al., 2004; Wear and
Thurber, 2015; Downs et al., 2016;
Watkins and Sallach, 2021

(Continued)
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their typical range, as floating plastics can travel longer distances
than natural substrates (e.g., wood and macroalgae), and sinking
microplastics are readily ingested by filter-feeding shellfish (Zettler
et al., 2013; Littman et al., 2020; Zhang et al., 2022).

Polluted coastal ecosystems also affect the health of coastal
human populations through fisheries decline (Hicks et al., 2019;
Li et al., 2019). Millions of people depend on tropical coastal
fisheries for essential protein and micro-nutrients (Kawarazuka
and Béné, 2010; Teh et al., 2013). More than 10% of the global
population is likely to face micronutrient and fatty acid deficiencies

if the current trajectories of fisheries decline continue, especially in
the developing nations at the Equator (Golden et al., 2016). In
addition, individuals already experiencing chronic health effects
due to repeated exposure to pathogens will have nutrient absorp-
tion challenges, further exacerbating anymicronutrient deficiencies
from declining fisheries (Chase and Ngure, 2016). Better recogni-
tion of the economic and human health costs resulting from
pollution impacts is critical for prioritising action and leveraging
the necessary cross-sectoral partnerships and resources required
for managing pollution at appropriate scales.

Table 2. (Continued)

Pollutant Impacts to health

Reduced tissue
regeneration in coral
Mortality of coral
Coral bleaching

Endocrine disruption of
development and/or
growth in fish
Altered predator–prey
interactions and
aggressive behaviour of
fish.

► May lead to changes in fish
population dynamics and
communities

► Potentially reduced fisheries
services.

Wenger et al., 2015

DNA alterations and
reduced reproduction
and development in
crustaceans.

► May lead to changes in
population dynamics of
commercially harvested species

► Potentially reduced fisheries
services.

Garcia et al., 2014; Maranho et al.,
2014

Growth inhibition in
algae.

► May lead to changes in fish
population dynamics and
communities, potentially
causing trophic cascades in
reefs

► Potentially reduced fisheries
services.

Aguirre-Martínez et al., 2015

Plastic and
microdebris

Humans Human populations Key references

Potential impacts to health (e.g., infertility and damage to the
nervous system).
Increase favourable conditions for pathogens.

► Limited information at present.
Potential increases in disease
burden associated with
contaminated water. Plastic
consumption potentially leading
to health hazards.

Zettler et al., 2013; Galloway, 2015;
Kirstein et al., 2016

Coral reef organisms Coral reef ecosystems Human populations Key references

Reduced reproduction
and growth
Disease, bleaching and
tissue necrosis

► Limited information at present.
May lead to reductions in the
composition, abundance, and
ultimately the accretion of coral.

► Limited information at present.
Potentially reduced coastal
protection services and reduced
fisheries services.

Todd et al., 2010; Lamb et al., 2018;
Huang et al., 2021

Enhanced transport of
other contaminants to
corals.

► Limited information at present.
May lead to a range of
contaminant-specific impacts,
such as reduced coral cover and
reef accretion from sediment.

Littman et al., 2020

Accumulation in fish,
molluscs, and other reef
associated organisms.
Enhanced transport of
pathogens and other
contaminants to fish,
molluscs, and other reef
associated organisms.

► Limited information at present.
May lead to changes in
population dynamics and
communities in marine
ecosystems.

► Limited information at present.
Potential increases in disease
burden associated with
contaminated seafood
consumption. Plastic
consumption potentially leading
to health hazards.

Smith et al., 2018; Littman et al.,
2020; Wu and Seebacher, 2020;
Zhang et al., 2022

*Contaminant dynamics are complex, with different impacts and response curves observed even between contaminants in the same group (e.g., different heavy metals generate different
impacts, different types of nutrients generate different impacts). Different levels of exposure also generate different responses, with some nutrient species generating positive responses under
certain exposure levels. Impacts reported here are a general summary of known impacts from the introduction of each contaminant group at harmful levels observed in the environment.
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Systems approaches to watershed management

There are an array of site-basedmanagement interventions that can
be implemented at nested scales within watersheds to improve
water quality (Liu et al., 2017; Richmond et al., 2019; Leder et al.,
2021). Mitigation efforts typically include policy instruments and
place-based interventions.

Policy instruments, such as regulations ormarket-based incen-
tives, can be applied at any scale and are not necessarily spatially
bound within watersheds or aimed at specific watersheds. For
example, the implementation of policy instruments can control,
reduce and/or prevent pollution through improved use, transport,
storage and disposal of chemicals (Taylor et al., 2012; Olmstead
and Zheng, 2021) and nutrients (UNEP, 2012). Policy instru-
ments can also initiate the implementation of soil conservation
and erosion/runoff control strategies, such as maintaining ripar-
ian buffer zones by legislating mangrove protection (Richmond
et al., 2019).

Place-based interventions are specifically applied at a range of
scales, from landscape, residential, down to individual and micro-
bial scales (Figure 2). Traditionally, human health focused place-
based interventions have been targeted at a residential and indi-
vidual scale, through the application of water, sanitation and
hygiene (WASH) infrastructure improvements or behaviour
change campaigns (World Health Organization (WHO), 2016;
World Health Organization (WHO) and United Nations Chil-
dren’s Fund (UNICEF), 2021). However, there is now substantial
evidence that landscape scale interventions could deliver signifi-
cant human health outcomes, while also protecting ecosystem
health. For example, a study involving 35 developing countries
found that higher upstream tree cover in watersheds was associ-
ated with a lower probability of childhood diarrhoeal disease
downstream (Herrera et al., 2017). In Hawai ͑i, Ragosta et al.
(2011) demonstrated that higher riparian canopy cover was asso-
ciated with lower Enterococcus concentrations in stream water.
New genomics research is beginning to reveal how more intact
ecosystems, from the watershed to the individual organism scale,
are more likely to carry lower pathogen loads (Hess et al., 2015;

Shore-Maggio et al., 2018; Bass et al., 2019). Coastal ecosystems
also play a key role in regulating disease risk in the marine
environment, with a recent study showing that when seagrass
meadows are present, there are 50% fewer potentially pathogenic
bacteria capable of causing disease in humans and aquatic organ-
isms (Lamb et al., 2017). However, coastal ecosystems themselves
are vulnerable to high levels of pollution (Crain et al., 2009; Wear,
2016; Turschwell et al., 2021), underscoring the importance
of implementing a system-wide approach when managing
watersheds.

Despite the recognition that pollution is one of the greatest
threats facing coral reef ecosystems (Burke et al., 2011; Andrello
et al., 2021), there are limited examples of water quality manage-
ment associated with successful recovery of coral reef ecosystems,
and of those, the management interventions have primarily only
tackled pollution arising from point-source pollution (Birkeland
et al., 2013; Reef Resilience Network, 2021). Designing and meas-
uring the effectiveness of policy instruments for water quality
management is difficult due to lack of compliance and information
on contaminant thresholds and monitoring (Taylor et al., 2012;
Olmstead and Zheng, 2021). Place-based interventions are often
impeded by difficulties in engaging stakeholders, lack of systematic/
transparent planning, and funding shortfalls (Jupiter et al., 2017;
Ayala-Orozco et al., 2018). For example, where stakeholders are not
effectively engaged, interventions can be hindered by divergent
visions, interests, and tensions within and between sectors
(Ayala-Orozco et al., 2018). Lack of engagement can also limit
buy-in and uptake of interventions by groups (Oteros-Rozas
et al., 2015; Mitchell et al., 2022). Lack of systematic/transparent
planning and evaluation can generate a lack of trust, accountability
and credibility from the perspective of stakeholders (Ayala-Orozco
et al., 2018), and lead to missed opportunities for effective action
(Jupiter et al., 2017; Beer et al., 2020). Funding shortfalls and lack of
personnel prohibit action at the scale and duration required (Ayala-
Orozco et al., 2018; Beer et al., 2020). Interventions for nonpoint
source pollution can be particularly challenging as pollution load-
ing is difficult to estimate and is often attributable to many

Figure 2. Nested scales of watershed processes.
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stakeholders and sectors beholden to different regulations (Shortle
and Horan, 2001).

Kāneʻohe Bay in Hawaii is a commonly cited case-study of
point-source pollution (sewage) management for coral reef ecosys-
tems resulting in a rarely seen recovery from an algal dominated
back to a coral dominated state (Bahr et al., 2015). More recent
successes include recovery of coral reef ecosystems within Faga’alu
Bay in American Samoa and Molokaʻi in Hawai‘i, where harmful
runoff from the upstream quarry activities (Samoa) and invasive
ungulate species (Hawaiʻi) were managed through targeted water-
shed interventions (Vargas-Ángel and Huntington, 2020). Both
regions’ intervention strategies required large and costly monitor-
ing efforts to observe success, and both observed setbacks in
recovery trajectories due to external disturbances (e.g., stormwaves
and bleaching; Bahr et al., 2015; Vargas-Ángel and Huntington,
2020).

Watershed case study 1: Watershed interventions for systems
health in Fiji

Low coverage of properly treated drinking water and sanitation in
remote areas of Fiji leaves communities heavily reliant on the safety
and security of unprotected water sources and vulnerable to water-
related diseases. Severe outbreaks of water-related infectious dis-
eases, such as leptospirosis, typhoid and dengue (hereafter LTD),
are common. LTD cases and associated syndromes are correlated
with environmental conditions, with large outbreaks typically
occurring following heavy rainfall and flooding (Lau et al., 2010;
Nelson et al., 2022), with increased severity within degraded water-
sheds (Jenkins et al., 2016).

Coastal and freshwater ecosystems are also threatened by
degraded watersheds in Fiji, with decreased fish, coral and seagrass
cover seen downstream of cleared and developed watersheds due to
the runoff of harmful pollutants (Jenkins et al., 2010; Brown et al.,
2017; McKenzie and Yoshida, 2020). These ecosystems support the
livelihoods, nutrition and incomes of many rural communities
(Mangubhai et al., 2018).

TheWatershed Interventions for SystemsHealth in Fiji (WISH
Fiji) project aims to address these overlapping problems through a
collaborative effort between government, academic and non-
governmental organisations (NGO) partners. Project collabor-
ators are co-designing targeted ‘up-stream’ interventions
implemented across various nested scales (Figure 2) with local
communities to prevent, detect and respond to LTDs, in addition
to mitigating degradation of downstream resources and ecosys-
tems (McFarlane et al., 2019). In doing so, the WISH Fiji
project aims to transform both environmental and public health
action from reactive to preventative, and improve the overall
health of the system tomaintain integrity against LTD and natural
disasters.

Watershed case study 2: Wastewater management in Roatan,
Honduras

Roatan Island, in the Bay Islands of Honduras, is bordered by coral
reef ecosystems that attract over a million tourists into the region.
Provisioning unpolluted runoff from watersheds is essential to
maintaining the health of these ecosystems, but also to protect
the health of Roatan communities and tourists. However, limited
wastewater treatment on the island resulted in discharge of
untreated or inadequately treated wastewater directly onto coral
reef ecosystems. Local ecological knowledge linked this wastewater

runoff to outbreaks of water-related infectious disease in both
humans and corals in the region, which raised fears of impacts
on tourism (the main source of income in Roatan).

To combat both the human health and ecosystem impacts of
untreatedwastewater discharge, a collaboration between government,
conservation groups and water associations identified the need for a
community wastewater treatment plant (WWTP) and water quality
program inWest End, Roatan. TheWest EndWWTPwas then built
in 2011 and has since been connected to 99% of accessible homes and
businesses in the area.

Critically, a water quality laboratory led by the Bay Islands
Conservation Association was also built to enable testing of marine
water downstream of the WWTP, allowing significant improve-
ments in water quality to be observed.Within 7 years of theWWTP
installation, the public beach downstream passed the United States
EPA safe swimming standards for Enterococcus, a bacteria which
can cause a variety of infections and is associated with faecal
contamination. The beach has since been awarded an Ecological
Blue Flag certification that validates the areas as safe for tourists.
Improved metrics for coral reef ecosystem health were also
observed, likely as a result of improved water quality (Coral Reef
Alliance, 2020).

Key enabling factors

Cross-sectoral coordination and integrated governance

Managing watersheds offers numerous opportunities to address
systems health challenges linked to achievement of multiple
SDGs (Jenkins et al., 2018a), but simultaneously tackling mul-
tiple objectives requires coordination and integrated govern-
ance. Cross-sectoral collaborations can create a more holistic
understanding of the watershed system and the breadth of its
impacts across sectors (Parkes et al., 2010). This holistic under-
standing can improve the efficiency of integrated watershed
management (IWM) by targeting multiple problems at once,
creating the potential for win–win scenarios for both coastal
ecosystem health and human health (Jupiter et al., 2014; Jenkins
and Jupiter, 2015).

The success of cross-sectoral coordination and governance
relies on careful participatory engagement and integrated policy
development and implementation (Olsen and Christie, 2000;
Lane, 2008). Decision-making should be developed through
engagement with a wide range of stakeholders and resource users
at multiple scales, improving coordination between divisions that
may typically focus on the coastline or in specific sectors (Wang
et al., 2016). Care should be taken to incorporate information
from multiple knowledge systems in planning and practice to
ensure alignment with local values and objectives (Tengö et al.,
2014). Engagement should capture the diversity of land and water
use practices, needs, goals and potential conflicts across sectors,
and ensure that all involvement is participatory, transparent,
accountable and culturally appropriate (Jupiter et al., 2014;
Richmond et al., 2019).

Managing watersheds for systems health often requires coord-
ination across multiple jurisdictions and administrative units that
operate within and beyond watershed boundaries. Watershed gov-
ernance is thus complicated by the mismatched boundaries of
biophysical processes operating within drainage basins and juris-
dictional boundaries of administrative systems responsible for land
use policy implementation and health systems surveillance and
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delivery (Davidson and De Loë, 2014). Polycentric and collabora-
tive governance approaches, particularly those involving Indigen-
ous peoples and local communities, are appropriate in this context
to bridge across sectors and jurisdictional levels and address water-
shed systems issues at appropriate scales (e.g., Huitema et al., 2009;
Morrison, 2017). Watershed management across multiple agencies
and organisations can be coordinated by specific institutions that
can serve as bridging organisations, such as catchment authorities,
which operate most effectively when they have legislated mandates
and operating budgets (Parkes et al., 2010; Davidson and De Loë,
2014).

Critically, integrated policy needs to be developed based on a
good understanding of the connections among systems so that
evidence-based predictions and decisions can be made about how
any interventions may influence outcomes in multiple sectors
(Álvarez-Romero et al., 2015). It is essential to consider any poten-
tial trade-off scenarios wherein mutual benefits are not shared
between sectors, or one sector may even be exposed to more harm.
For example, the construction or restoration of wetlands for
improving water quality and ecosystem health may have unin-
tended consequences for mosquito-borne disease risk (Malan
et al., 2009; Horwitz and Finlayson, 2011); and the installation of
dams and weirs for improving water security and sediment pollu-
tion may have unintended consequences for freshwater ecosystems
and fisheries (Dudgeon et al., 2006; Kroon et al., 2014). Having a
wide range of informed stakeholders sharing resources and taking
an integrated approach will assist in buffering this risk and create
more effective and proactive governance wherein benefits across
sectors are optimised.

Sustainable financing

Improving water quality through upstream interventions is expen-
sive and requires sustained investment (Muchapondwa et al., 2018).
There is often a long lag time between implementing interventions
and observing improvements in metrics of ecosystem and public
health, while success can also be obscured by other disturbances,
such as cyclones and coral bleaching (Richmond et al., 2019).
Delays in realising anticipated benefits create disincentives for
long-term action when program and policy targets require short-
term results.

Water andwatershed funds are a common financing tool used in
various geographies globally to ensure a sustained source of funding
(The Nature Conservancy (TNC) and Goldman, 2009; Kauffman,
2014). These funds are often resourced through voluntary contri-
butions of donors and water users, such as utility companies and
farmers, which are then used to pay for and support upstream
strategies to conserve the quality and security of water sources.
Boards may invest the funding directly or use grants to identify and
develop critical intervention strategies (The Nature Conservancy
(TNC) and Goldman, 2009). Linking the needs of downstream
water users with upstream communities and land users allows the
funds to provide a low-cost and sustainable financing method of
maintaining clean and regular water supply (The Nature Conser-
vancy (TNC) and Goldman, 2009).

Examples of successful water funds are mainly from temperate
regions and excludemarine ecosystems, such as the Latin American
Water Funds Partnership (LAWFP). LAWFP is an agreement
between a consortium of international NGOs to enhance and
preserve water security in Latin America and supports 25 water
funds across nine countries with varying water management goals
and local funding bodies (Bremer et al., 2016). In total, LAWFP

supported water funds are managing over 227,000 ha of land,
potentially benefiting 89 million people, and have leveraged over
$205 million USD in resources. Many funds prioritise not only
water infrastructure management for humans, but also the use of
nature-based solutions as a means to preserve the health of aquatic
ecosystems (Kauffman, 2014). However, as with many water funds
(and conservation efforts), there have been limited measurements
of the outcomes or baselines to fully perceive the benefits of these
funds (Bremer et al., 2016).

The availability of local sources of funding for sustainable
financing of a water or watershed fund will vary from region to
region as beneficiaries vary. Not all communities and industries
pay for water use: under these circumstances, it may be feasible
to develop business cases for investment based on foregone
healthcare and productivity costs if watershed improvements
prevent people from getting sick. Key to developing these busi-
ness plans is first assessing howmuch disease risk can be reduced
by a portfolio of management interventions and balancing the
wide range of savings in foregone costs (healthcare, missed work
and education, tourism impacts) against annual investment
needs. Considerations also need to be taken for the potential
benefits from buffering against the influence of climate change
on disease.

Various other types of conservation and climate change finan-
cing can additionally or alternatively support watershed manage-
ment financing. For example, in some coral reef areas, payment for
ecosystem services schemes have also been proposed as a way for
downstream resource users to incentivise upstream resources users
to manage water quality (Goldman-Benner et al., 2012; Peng and
Oleson, 2017). Climate financing that supports nature-based solu-
tions is commonly expected to deliver various water services,
though evidence shows mixed results on base flow, annual surface
runoff and water quality depending on local geographic conditions
and the mix of interventions utilised (Vigerstol et al., 2021; de
Freitas et al., 2022).

Conclusions/recommendations

The latest science makes it clear that unplanned development, poor
land use, unsustainable agricultural practices and poor wastewater
management within watersheds are significant threats to coastal
populations and ecosystems. Despite the threats, incentivising
improved watershed management practices for the sake of improv-
ing water quality for downstream environmental benefits has
remained a challenge. In the future, it is recommended that policies
and management are designed using systems health approaches
that aim to restore water quality to achieve multiple benefits for
human and coastal ecosystem health, while facilitating sustainable
social and economic development.

Through our review, we identified a series of actionable recom-
mendations to promote holistic approaches to watershed manage-
ment for systems health (Table 3). These include best practice
lessons from existing, IWM programs on: inclusive planning;
implementation through cross-sectoral coordination; participatory
management; monitoring to identify risks and measure progress of
interventions; mobilising resources to sustain long-term action;
and sharing information to promote replication and scaling of
integrated approaches. To achieve SDG targets by 2030, there is
increasing urgency to prioritise these types of management
approaches that simultaneously deliver on benefits for nature,
people and climate.
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